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Capacity4Rail WP3.2

« Simulation and models to evaluate enhanced capacity

« The aim of this task is to evaluate existing tools for their
suitability to assess and improve capacity utilization
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Capacity4Rail WP3.2

« Simulation and models to evaluate enhanced capacity

« The aim of this task is to evaluate existing tools for their
suitability to assess and improve capacity utilization

« ”Capacity depends on the way it is utilised” (UIC 406)

« Timetabling and traffic control determine the way
capacity is utilised

Timetabling &
Traffic control

~ UIC 406
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Modelling framework — ON TIME
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Current SOTA in timetabling and traffic
control

« Traffic control « Timetabling
v Optimisation models v Optimisation models
X Deterministic — v Robustness against
assume full knowledge distrubances
of the present and the X Resilience —

future considering traffic

control actions
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Current SOTA in timetabling and traffic
control

« Traffic control « Timetabling

v Optimisation models v Optimisation models

Deterministic — v Robustness against
assume full knowledge stochasticity
of the present and the X Resilience — traffic

future control actions are not

/ considered

Stochastic prediction of train trafic
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Uncertainty in railway traffic

Railway traffic typically operates according to a timetable, however...
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Uncertainty in railway traffic

Railway traffic typically operates according to a timetable, however...
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Stochastic real-time traffic prediction

Model is based on Bayesian networks (BN)

Advanced data mining algorithms combined with the domain
knowledge

Accurate modelling of uncertainy under presence of real time
infromation
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Stochastic real-time traffic prediction

Model is based on Bayesian networks (BN)

Advanced data mining algorithms combined with the domain
knowledge

Accurate modelling of uncertainy under presence of real time
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Advantages of BN model

Model gives accurate and stable predictions over long
horizons

Integration of historical data with real time information

Probability of delay of all events is continuously updated
as new information becomes available

Distribution of a single, subset or complete set of events

Most probable outcome

18

LINKOPING
II.“ UNIVERSITY



Title/Lecturer

Application of BN model

Case study Stockholm -
Norrkoping

Model trained with
"Lupp” data

Tested in a simulated
real time environment

Stable predictions

within 1 min for 30 min
ahead

Mean absolute error
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Stochastic Prediction of Train Delays in Real-time using Bayesian Networks
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Disdvantage of BN model ®

e Train routes and train orders are assumed to be known for
the whole duration of prediction horizon

 Historical data are interventional data!
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Disdvantage of BN model ®

e Train routes and train orders are assumed to be known for
the whole duration of prediction horizon :

 Historical data are interventional data!
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Stochastic prediction of dispatching actions

 Model based on Naive Bayesian classifier (NBC)

Delay train 1 Delay train 2

[\

Train 1 -> Train 2 Train 2 -> Train 1
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Stochastic prediction of dispatching actions

Delay train 2

: Wrong classification
13%

Delay train 1
Secondary delay

Changed order No reordering
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Application of the models

Independent tool for traffic prediction and information

25
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Application of the models

Independent tool for traffic prediction and information

Traffic prediction | | Control prediction
BN NBC

scenarios

Robust rescheduling

Meng & Zhou, (2015)
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Application of the models

Independent tool for traffic prediction and information

Traffic prediction | | Control prediction

BN NBC
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Meng & Zhou, (2015)
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Application of the models

Independent tool for traffic prediction and information
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Next steps

Integration of the Bayesian network model for real-time
stochastic traffic prediction in a robust rescheduling framework

Integration of Naive Bayesian clasifier in a realistic timetable
model for simultaneous testing of robustness and resilience

Computing optimal robust and resilient timetables
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