

KAJT Vårseminarium 2023 2023-05-15

Simulation-assisted machine learning for yard departure prediction: a benchmarking study between European and North American contexts

- Niloofar Minbashi
- PhD Candidate
- KTH Royal Institute of Technology

Minbashi, N., Zhao, J., Dick, C. T., Bohlin, M. (2023, April 25-28). Application of simulation-assisted machine learning for yard departure prediction. Presented at the 10th International Conference on Railway Operations Modelling and Analysis (ICROMA), RailBelgrade 2023, Belgrade, Serbia.

Agenda

- Motivation
- Overview
- Research Questions
- Method
- Results
- Conclusion

- PhD thesis: Application of Predictive Analytics for Shunting Yard Delays
- October 2018 June 2023
- Licentiate defense November 2020
- Supervisors:

Markus Bohlin Visiting Professor, KTH

Behzad Kordnejad Researcher, KTH

Carl-William Palmqvist Researcher, KTH

Motivation

$\approx 10 \times 10^9$ tonne – kilometers 79×10⁶ tonnes of CO₂

 $\approx 20 \times 10^9$ tonne – kilometers 1800×10⁶ tonnes of CO₂

Source: The International Transport Forum's ITF Transport Outlook 2019

50 by 2050

Optimised Real-time Yard and Network Management

FR8RAIL

Research Problem

Research Gaps

- 1. Methods: Data-driven
 - 1. Descriptive Analytics
 - 2. Predictive Analytics
 - 3. Hybrid Modeling
- 2. Yard performance:
 - 1. Analyzing yard departure deviations
 - 2. Analyzing the network impact on departure delays
- 3. Yard models:
 - 1. Yard departure prediction models
 - 2. Hybrid yard and network models
 - 3. Hybrid yard models: event-driven and data-driven models

Research Problem (Swedish Context): Yard Departure Prediction

Descriptive Analytics: Probability Distribution

Contents lists available at ScienceDirect

Journal of Rail Transport Planning & Management

journal homepage: http://www.elsevier.com/locate/jrtpm

Check for updates

Statistical analysis of departure deviations from shunting yards: Case study from Swedish railways

Niloofar Minbashi ^{a,*}, Carl-William Palmqvist ^{b,c}, Markus Bohlin ^a, Behzad Kordnejad ^a

^a Division of Transport Planning, School of Architecture and Built Environment, KTH, SE-100 44, Stockholm, Sweden

^b Division of Transport and Roads, Department of Technology and Society, Lund University, P.O. Box 118, 221 00, Lund, Sweden ^c K2 Swedish Knowledge Centre for Public Transport, Bruksgatan 8, 222 36, Lund, Sweden

Descriptive Analytics: Network Impact

Minbashi, N., Bohlin, M., Kordnejad, B. (2020). A departure delay estimation model for freight trains. TRA 2020, the 8th Transport Research Arena: Rethinking transport – towards clean and inclusive mobility, Helsinki, Finland.

Minbashi, N., Bohlin, M., Kordnejad, B. (2021, February 3-4). Analysis of railyard congestion and departure delays relationship: a case study from Swedish railways. hEART 2020: 9th Symposium of the European Association for Research in Transportation, Lyon, France.

Predictive Analytics: Yard Departure Prediction Model

Research Article

The Application of Tree-Based Algorithms on Classifying Shunting Yard Departure Status

Niloofar Minbashi (),¹ Markus Bohlin (),¹ Carl-William Palmqvist (),² and Behzad Kordnejad ()¹

¹Division of Transport Planning, KTH Royal Institute of Techonology, 100 44 Stockholm, Sweden ²Division of Transport and Roads, Lund University, P.O. Box 118, 221 00 Lund, Sweden

Hybrid Modeling: Integrated Yard-Network

Contents lists available at ScienceDirect

Journal of Rail Transport Planning & Management

journal homepage: www.elsevier.com/locate/jrtpm

Machine learning-assisted macro simulation for yard arrival prediction

Niloofar Minbashi ^{*}, Hans Sipilä, Carl-William Palmqvist, Markus Bohlin, Behzad Kordnejad

Division of Transport Planning, KTH Royal Institute of Technology, Brinellvägen 23, SE-100 44 Stockholm, Sweden

Model Framework

Application of Simulation-assisted Machine Learning for Yard Departure Prediction

Niloofar Minbashi ^{a,1}, Jiaxi Zhao ^b, C. Tyler Dick ^b, Markus Bohlin ^{a,c} ^a Division of Transport Planning, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden ^b Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA ^c School of Innovation, Design and Technology, Mälardalen University, Eskilstuna, Sweden ¹ E-mail: minbashi & Mbas. Phone: +46 (8) 790 70 54

Research Article

The Application of Tree-Based Algorithms on Classifying Shunting Yard Departure Status

Niloofar Minbashi 😓,¹ Markus Bohlin (0,¹ Carl-William Palmqvist (0,² and Behzad Kordnejad (0¹

¹Division of Transport Planning, KTH Royal Institute of Techonology, 100 44 Stockholm, Sweden ²Division of Transport and Roads, Lund University, P.O. Box 118, 221 00 Lund, Sweden

Niloofar Minbashi^{*}, Hans Sipilä, Carl-William Palmqvist, Markus Bohlin, Behzad Kordnejad Distain of Transport Haming, KTH Royal Justiane of Technology, Brindheigen 23, 58-100 44 Suckheim, Sweden

2023-05-15

Check for updates

Hybrid Modeling:

Application of Simulation-assisted Machine Learning for Yard Departure Prediction

 Niloofar Minbashi ^{a,1}, Jiaxi Zhao ^b, C. Tyler Dick ^b, Markus Bohlin ^{a,c}
^a Division of Transport Planning, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
^b Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA
^c School of Innovation, Design and Technology, Mälardalen University, Eskilstuna, Sweden

¹ E-mail: minbashi@kth.se, Phone: +46 (8) 790 70 54

Research Questions

1) Can synthetic data from simulation in a North American context validate a machine learning model developed on real-world yard data from the European context?

2) Can simulation data improve the machine learning by providing access to more operational factors?

3) Can a model developed from simulation data inform the collection of new performance metrics to improve a model developed from the real-world data?

Method:

Simulation-assisted Machine Learning

Simulation-assisted Machine learning boundary

Method: Machine Learning

- Original model extended from (Minbashi et al., 2021 & 2023)
- Decision Tree
- 10-fold cross-validation
- Evaluation Criteria:
 - R-Squared
 - Mean absolute error
 - Root mean squared error
 - Mean signed difference

Method: ML - Predictors

Schedule Data

Departing Train Number

Departure Hour

Departure Week-Day

Departure Month

Min Wagon Dwell Time

Max Wagon Dwell Time

Number of Wagons

Number of Arriving Trains

Maximum Planned Weight

Maximum Planned Length

Operational Data

Maximum Operated Length

Maximum Operated Weight

Min Arriving Deviation

Mean Arriving Deviation

Method: Simulation - Predictors

	Data Type	Predictors		
		Scheduled departure hour		
	Schedule	Train length		
		Number of arriving trains		
		Number of wagons		
	Arrival yard	Minimum hump duration		
		Maximum hump duration		
		Receiving utilization		
		Hump utilization		
		Idle time waiting for hump		
	Classification yard	Minimum bowl idle		
		Maximum bowl idle		
		Pulldown utilization		
	Departure yard	Departure utilization		
		Departure inspection time		
		Idle time waiting for departure		

Niloofar Minabshi_KAJT Vårseminarium 2023

Model (General Concept)	R-Squared	Mean Absolute Error (min)	Root Mean Squared Error (min)	Mean Signed Difference
Real-world	0.90	3.4	14.6	-0.004
Baseline simulation	0.87	3.0	6.6	0.002
Ultimate Randomness simulation	0.70	6.6	12.6	0002

Model	Step-wise Concept	R ²	MAE	RMSE	MSD
Real-world	Step 0 Schedule	0.90	3.5	15.18	0.05
	Step 1 Arrival	0.88	3.6	16.4	0.11
	Step 2 Classification	0.90	3.5	15.31	0.06
Baseline simulation	Step 0 Schedule	0.80	4.2	7.80	0.00
	Step 1 Arrival	0.79	4.2	8.40	0.00
	Step 2 Classification	0.79	4.2	8.40	0.002
	Step 3 Departure	0.87	3.0	6.00	0.001
Ultimate	Step 0 Schedule	0.57	9.0	16.00	0.003
Randomness	Step 1 Arrival	0.60	8.0	15.00	0.003
Sindiaton	Step 2 Classification	0.62	9.0	15.00	0.001
	Step 3 Departure	0.70	7.0	13.00	0.003

Results: Global Feature Importance

Results: Global Feature Importance

Conclusion

- Machine learning performs well for both contexts.
- Simulation data can help in validating model performance.
- Simulation data can be beneficial where data is sensitive.
- Schedule predictors have enough information for accurate departure predictions.
- Departure yard predictors add higher information for ýard departure prediction.
- Adding randomness to the simulation should be explored in explainability terms.

Acknowledgement

Questions?

Niloofar Minbashi

minbashi@kth.se

Jiaxi Zhao

jiaxi.zr@utexas.edu

Stockholm, 2022-06-13

List of papers:

- I. Minbashi, N., Palmqvist, C. W., Bohlin, M., Kordnejad, B. (2021). Statistical analysis of departure deviations from shunting yards: case study from Swedish railways. Journal of Rail Transport Planning & Management, 18, 100248.
- II. Minbashi, N., Bohlin, M., Kordnejad, B. (2020). A departure delay estimation model for freight trains. Conference Proceedings of 8th Transport Research Arena TRA, Helsinki, Finland.
- III. Minbashi, N., Bohlin, M., Palmqvist, C. W., Kordnejad, B. (2021). The application of treebased algorithms on classifying shunting yard departure status. Journal of Advanced Transportation, 2021, 1-10.
- IV. Minbashi, N., Sipilä, H., Palmqvist, C. W., Bohlin, M., Kordnejad, B. (2023). Machine learningassisted macro simulation for yard arrival prediction. Journal of Rail Transport Planning & Management, 25, 100368.
- V. Minbashi, N., Zhao, J., Dick, C. T., Bohlin, M. (2023). Application of Simulation-assisted machine learning for yard departure prediction. Accepted at the 10th International Conference on Railway Operations Modelling and Analysis (ICROMA). RailBelgrade 2023.
- VI. Minbashi, N., Bohlin, M., Kordnejad, B. (2021, February 3-4). Analysis of railyard congestion and departure delays relationship: a case study from Swedish railways. hEART 2020: 9th Symposium of the European Association for Research in Transportation, Lyon, France.