

Wheelset & brake systems

Uneven heating of railway wheels – simulations, lab tests, field measurements

Tore Vernersson, Eric Landström & Anders Ekberg CHARMEC, Chalmers University of Technology

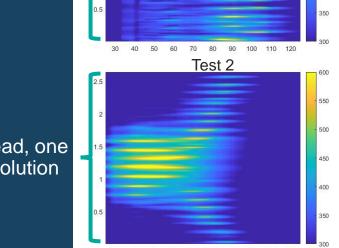
anders.ekberg@chalmers.se

Background

- Current approval of tread braked wheels
 - standardised brake rig testing
 - costly & limited in relevance
- Strive for virtual homologation
 - development, verification, and calibration of modelling framework
- Brake test rig at Chalmers
 - study of high temperature braking
 - soon extended with wheel—rail rolling contact
- Has also revealed unexpected findings

Chalmers brake rig

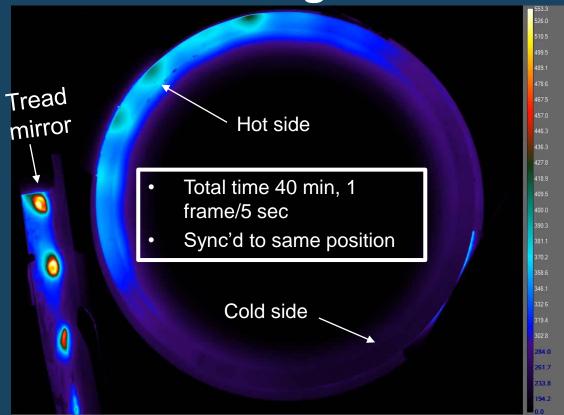
- Chalmers current brake rig
 - operational since autumn 2022
 - controlled in-house testing at varying power levels
- Upgrade with rail wheel
 - installation on-going
 - Allows e.g., rolling contact fatigue testing of high temperature wheels



Experimental findings

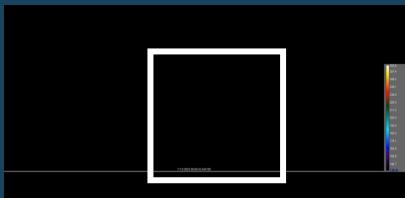
- Uniform heating tends to be localised
 - Too stiff braking system promotes localised heating
- Hot spot formations
 - almost stationary in position
- > Some positions are *much* warmer than average
 - material degradation during longterm drag braking
 - implications for safety

Tread, one revolution

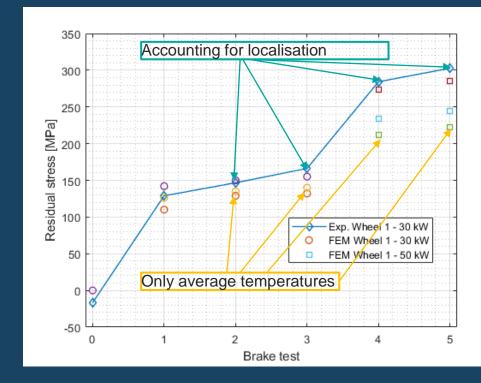


Test 1

Tread, one revolution


Experimental findings

Field tests LKAB Iron Ore Train


- Uneven distribution between wheels, and around wheels
 - Small number of unevenly heated wheels (approx. 1/50)
 - Significant spread in wheel temperature, even in same bogie
- Uneven heating implies out-ofround wheels during braking and increase of wheel-rail contact forces

Possibilities to simulate

- New material model
 - good agreement between simulations and brake rig testing
 - inclusion of rolling contact 2024
- Thermal localisation
 - necessary to account
 - gives significant increase in residual stress levels

Concluding remarks

- Enhanced understanding of block wheel rail system
 - potential to enhance wheel designs
 - potential to reduced wheel—rail thermal damage
 - reduced risks of derailments from wheel fracture
- New brake research testing facility
 - high temperature testing of braking equipment
 - already identified previously unknown phenomena with significant implications
 - can test operationally relevant scenarios and calibrate models
- Potential for virtual homologation

CHALMERS UNIVERSITY OF TECHNOLOGY