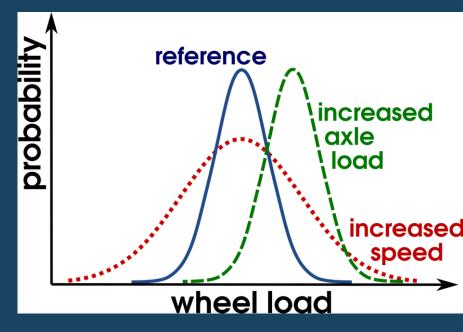


Track technology & mechanics

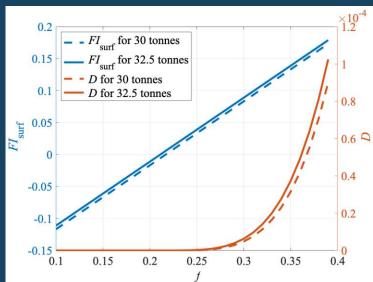
Consequences of track modifications – experiences from theory and field measurements, and estimates of savings


Jens Nielsen, Björn Pålsson & Anders Ekberg CHARMEC, Chalmers University of Technology

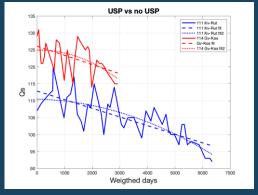
anders.ekberg@chalmers.se

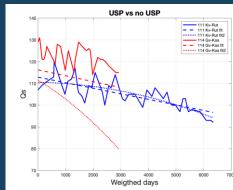
Changing conditions and assessing resulting consequences

- Track modifications
 - Altered track structure
 - renovation
 - redesign
 - Altered load conditions
 - increased load and/or speed
 - new vehicles
- Consequences
 - Cost
 - Deterioration
 - Environment



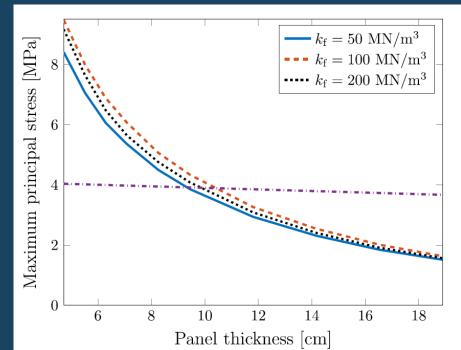
Example: Theoretical assessment of influence

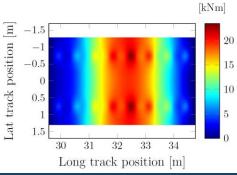

- Rolling contact fatigue at increased load
 - 30+ tonnes axle load
 - main influence from increased $f = F_{lat}/F_{vert}$
- Verification
 - small effects on rail due to one test train
 - on wheels estimated increase in fatigue damage of around 40–45%
 - in tests 32% more wheels with rolling contact fatigue
- Savings
 - balancing investments & costs
 - prerequisite for implementing change



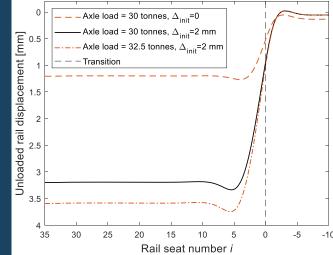
Example: Operational experience of USP

- Influence on track geometry
 - quantified by the track quality number
 - comparison of two sections of the iron ore line
 - accounting for tonnage and age by transformations
 - no significant long- or shortterm effects
- Savings
 - about 200' SEK/km
 - NOTE! Conclusions not general for all lines and sections



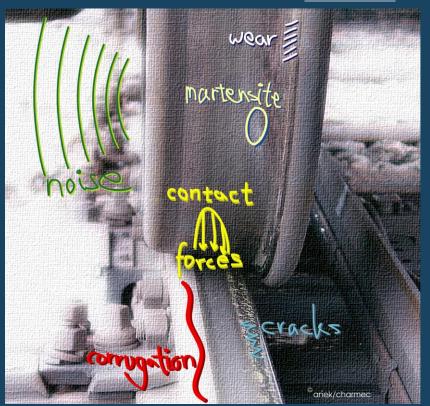


Example: Optimisation of slab track design


- Current standards may be overly conservative
 - higher LCC
 - environmental impact
- Simulations to address innovative requirements in terms of
 - structural integrity & robustness
 - life cycle cost
 - environmental impact
- Savings
 - reduced material consumption etc
 - possibility for virtual homologation

Example: Design of transition zones

- Transition zone between two track forms
- Long-term monitoring of sleeper settlements
- Calibrated simulations
- Evaluation of influences of
 - track levelling errors
 - under sleeper pads
 - increased axle load or speed
- Savings
 - reduced material consumption etc
 - possibility for virtual homologation



Concluding remarks

- Results based on long-term research to develop knowledge and tools
- Important to have the link from more fundamental research to implementation and back
- Savings just for these three examples exceed the total costs of CHARMEC's research

CHALMERS UNIVERSITY OF TECHNOLOGY