Last-minute Crew Rescheduling: Model and Heuristic Approach

C-beske

Liyun Yu, Carl Henrik Häll, Anders Peterson, Christiane Schmidt

-

Mälartåg

Problem Description

Methodology

Case Study

Infrastructure failure

Bad weather

Rolling stock breakdown

Blocks on rail track

Infeasible vehicle schedule

Employee shortage

Bad weather

Employee shortage

Driver Employee shortage

Driver shortage

- Prefer as planned
- Less changes on short notice
- Fast-generated schedule after disruption

Short term

- Financial loss
- Employees' working time loss

Long term

- Less trust from passengers
- Poor competitiveness

Problem Description

Problem Description

Our scenario

Daily driver shortage

- Take leaves in short notice
- Insufficient standby drivers

Goal

- # Task cancellations
- # Changed tasks

Problem Description

MILP problem

Objective function

minimize $f(x_{g,d}, z_{g,d})$

MILP problem

Objective function

 $f(x_{g,d}, z_{g,d})$ minimize Total number of unassigned tasks

MILP problem

Objective function

MILP problem

- Consistent connections of time and geographical location
- Total working time
- Driver's license
- Rest
- Break

MILP problem

- Consistent connections of time and geographical location
- Total working time
- Driver's license
- Rest
- Break

MILP problem

- Consistent connections of time and geographical location
- Total working time
- Driver's license
- Rest
- Break

MILP problem

- Consistent connections of time and geographical location
- Total working time
- Driver's license
- Rest
- Break

MILP problem

- Consistent connections of time and geographical location
- Total working time
- Driver's license
- Rest
- Break Break time duration
 Maximum work hour without a break

MILP Model with Commercial Solver

- to get the optimal solution

Approach Based on Tabu Search

- less computational time and space
- good enough result

Tabu Search

A local search-based heuristic that avoids revisiting solutions by recording the recent history of the search in a short-time memory called Tabu List. [1]

[1] Froger, A. *et al.* (2016) 'Maintenance scheduling in the Electricity Industry: A Literature Review', *European Journal of Operational Research*, 251(3), pp. 695–706. doi:10.1016/j.ejor.2015.08.045.

Tabu Search

A local search-based heuristic that <u>avoids revisiting</u> <u>solutions</u> by recording the recent history of the search in a short-time memory called Tabu List. [1]

[1] Froger, A. *et al.* (2016) 'Maintenance scheduling in the Electricity Industry: A Literature Review', *European Journal of Operational Research*, 251(3), pp. 695–706. doi:10.1016/j.ejor.2015.08.045.

Tabu Search

A local search-based heuristic that <u>avoids revisiting</u> <u>solutions</u> by recording the recent history of the search in a short-time memory called <u>Tabu List</u>. [1]

[1] Froger, A. *et al.* (2016) 'Maintenance scheduling in the Electricity Industry: A Literature Review', *European Journal of Operational Research*, 251(3), pp. 695–706. doi:10.1016/j.ejor.2015.08.045.

Tabu List

- Short-time memory
- Avoiding local optimum

Select an unassigned task:

Randomly

Tabu List:

• The schedule of all drivers

Termination Criteria:

- Maximum number of iteration
- The rest of all unassigned tasks cannot be assigned
- The unassigned task pool is empty

Termination Criteria:

- Maximum number of iteration
- The rest of all unassigned tasks cannot be assigned

The unassigned task pool is empty

Termination Criteria:

- Maximum number of iteration
- The rest of all unassigned tasks cannot be assigned
- The unassigned task pool is empty

Neighboring Solutions:

LINKÖPINGS LINIVEDSITET

- Deadheading
- Extra assign

- Drivers with feasible schedules

Initial schedule s:

LINKÖPINGS LINIVERSITET

LINKÖPINGS LINIVEDSITET

Level of freedom

 n^{diff} : maximum allowed difference between # tasks unassigned from driver d and # tasks assigned to driver d. Strategy I: Directly assign to all drivers

Another unassigned task

Strategy I: Directly assign to all drivers

Another unassigned task

Strategy I: Directly assign to all drivers

- Selected unassigned task
- Another unassigned task

Strategy I: Directly assign to all drivers

- Selected unassigned task
- Another unassigned task

Strategy I: Directly assign to all drivers

- Selected unassigned task
- Another unassigned task
- Deadheading assigned task

Strategy II: Swap with assigned tasks

Another unassigned task

Strategy II: Swap with assigned tasks

Selected unassigned task

Another unassigned task

Strategy II: Swap with assigned tasks

- Selected unassigned task
- Another unassigned task

Strategy II: Swap with assigned tasks

- Selected unassigned task
- Another unassigned task

Strategy II: Swap with assigned tasks

- Selected unassigned task
- Another unassigned task
- Deadheading assigned task

MILP Model vs Approach

Dat	a size	Method	Time	Space	Successful Assigned Rate
0.50 *Large sma	.11	Tabu-Search-based Approach	9.7 s	$0.16~\mathrm{GB}$	8/18
	_	MILP Model (Gurobi 11.0)	0.7 h	$12.24~\mathrm{GB}$	10/18
0.75 *Large med	lium	Tabu-Search-based Approach	$12.3 \mathrm{~s}$	$0.18~\mathrm{GB}$	12/22
		MILP Model (Gurobi 11.0)	7.5 h	$35.00~\mathrm{GB}$	17/22
One-daylarg	e	Tabu-Search-based Approach	$21.7~\mathrm{s}$	0.20 GB	29/37
()		MILP Model (Gurobi 11.0)	-	out of space	-

MILP Model vs Approach

	Data size	Method	Time	Space	Successful Assigned Rate
0.50 *Large	small	Tabu-Search-based Approach	9.7 s	$0.16~\mathrm{GB}$	8/18
		MILP Model (Gurobi 11.0)	$0.7 \ h$	$12.24~\mathrm{GB}$	10/18
0.75 *Large	medium	Tabu-Search-based Approach	$12.3 \mathrm{\ s}$	$0.18~\mathrm{GB}$	12/22
		MILP Model (Gurobi 11.0)	$7.5 \ h$	35.00 GB	17/22
One-day Schedule	Tabu-Search-based Approach	$21.7~\mathrm{s}$	$0.20~\mathrm{GB}$	29/37	
	MILP Model (Gurobi 11.0)	-	out of space	-	

MILP Model vs Approach

_	Data size	Method	Time	Space	Successful Assigned Rate
0.50 *Large	small	Tabu-Search-based Approach	9.7 s	$0.16~\mathrm{GB}$	8/18
		MILP Model (Gurobi 11.0)	$0.7 \ h$	$12.24~\mathrm{GB}$	10/18
0.75 *Large	medium	Tabu-Search-based Approach	$12.3~\mathrm{s}$	$0.18~\mathrm{GB}$	12/22
		MILP Model (Gurobi 11.0)	7.5 h	$35.00~\mathrm{GB}$	17/22
One-day Schedule	large	Tabu-Search-based Approach	$21.7~\mathrm{s}$	$0.20~\mathrm{GB}$	29/37
		MILP Model (Gurobi 11.0)	-	out of space	-

Approach: one-day schedule

11

Absent

Approach: one-day schedule

Unassigned tasks

Approach: performance

Approach: performance

Approach: performance

minimize
$$f(x_{g,d}, z_{g,d}) = \left[\lambda \sum_{g \in G} \sum_{d \in D \cap \hat{D}} z_{g,d} + (1 - \lambda)\right] \sum_{d \in D^u} x_{g,d}$$

