

TIONG KAH YONG, LUND UNIVERSITY

LUND UNIVERSITY

Introduction

Research design

Answering research questions Conclusion and future research

Introduction

•Train delay is defined as the *deviation of actual train events from scheduled train events.*

•Train delay is defined as the *deviation of actual train events from scheduled train events.*

•*High-capacity utilisation* and *heterogeneous traffic* make the railway network susceptible to delays.

Train delay prediction model *Predicting* the expected train traffic conditions at a future time

Train delay prediction model *Predicting* the expected train traffic conditions at a future time.

Input for solving many problems related to train traffic management.

Timetable planning

Timetable planning

Real-time train management

Timetable planning

Reliable passenger information system

Research design

Research gap

Research gap

Insufficient understanding of existing train delay prediction models.

Research gap

Insufficient understanding of existing train delay prediction models.

•There is a lack of innovation in developing train delay prediction models with *practical applications*.

Research aim

To increase understanding of data-driven train delay prediction models

Research questions, papers and their connections

Research question 1 What factors need to be taken into account when building a train delay prediction model?

To increase *our understanding of the various aspects* that must be considered.

Research question 1 What factors need to be taken into account when building a train delay prediction model?

Paper 1 A Review of Data-driven Approaches to Predict Train Delays

Research question 2

How are selected input variables improving the performance of the train delay prediction model?

To *identify useful input variables* to enhance model performance

Research question 3 What approaches can enhance the train delay prediction model?

The *formulation of innovative technical solutions* to address the current modelling challenges

Research question 4 How can train delay prediction models be evaluated?

To thorough assessment of train delay prediction models

Answering research questions

Research question 1

What factors need to be taken into account when building a train delay prediction model?

Scope

Long-term prediction models

Short-term prediction models

Scope

Long-term prediction models

- Study how different factors affect train delays
- Use historical data
- Predict delays several days or months in advance
- For both strategic and tactical train traffic planning

Short-term prediction models

Scope

Long-term prediction models

- Study how different factors affect train delays
- Use historical data
- Predict delays several days or months in advance
- For both strategic and tactical train traffic planning

Short-term prediction models

- Focus on making accurate predictions
- Use real-time and historical data
- Predict near-future train delays
- For operational level traffic management

Statistical regression

 It has limitations for modelling complex and nonlinear relationships

Statistical regression

Conventional machine learning

- It has limitations for modelling complex and nonlinear relationships
- Less interpretable
- Requires humanengineered spatiotemporal features to capture the spatial and temporal flow patterns of data

Statistical regression

Conventional machine learning

- It has limitations for modelling complex and nonlinear relationships
- Less interpretable

•

Requires humanengineered spatiotemporal features to capture the spatial and temporal flow patterns of data

Neural Network

- Automatic learning of spatiotemporal representations from data
- Flexibility to integrate different architectures into hybrid models

Statistical regression

Conventional machine learning

- It has limitations for modelling complex and nonlinear relationships
- Less interpretable

•

Requires humanengineered spatiotemporal features to capture the spatial and temporal flow patterns of data

Neural Network

- Automatic learning of spatiotemporal representations from data
- Flexibility to integrate different architectures into hybrid models

Hybrid model

 Multiple base models with uncorrelated prediction errors

Research question 2

How are selected input variables improving the performance of the train delay prediction model?

Findings

• The train operation data greatly influences delays.

Findings

- The train operation data greatly influences delays.
- Other data adds a layer of adaptability.

Findings

- The train operation data greatly influences delays.
- Other data adds a layer of adaptability.
- The recent observations from nearby stations or trains are important.

Research question 3

What approaches can enhance the train delay prediction model?

Location-conditioned concept

Findings

• Regression models trained conditionally on current train location.

 $\hat{y} = f(X|i)$

where $\hat{y} = (\hat{t}_{i+1}, \hat{t}_{i+2}, ..., \hat{t}_N)$, denotes the predicted train arrival delays at subsequent stations given current station *i*. *X* represents a set of predictor variables encompassing both historical and real-time explanatory factors.

Location-conditioned concept

$$\hat{y} = f(X|i)$$

where $\hat{y} = (\hat{t}_{i+1}, \hat{t}_{i+2}, ..., \hat{t}_N)$, denotes the predicted train arrival delays at subsequent stations given current station *i*. *X* represents a set of predictor variables encompassing both historical and real-time explanatory factors.

Findings

- Regression models trained conditionally on current train location.
- Considers observable real-time and historical data.

Multi-output framework

Arrival Times Prediction

T=1- - - -Line end Line start Following station Following station Following station $S_2 = S_{i+2}$ Following station Current station $S_{3} = S_{i+3}$ $S_{I}=S_{i+I}$ $S_4 = S_N = S_i + 4$ $S_o = S_i$ T=2 MIDIA Line start Current station Following station Following station Line end $S_I = S_i$ Previous station $S_2 = S_{i+1}$ $S_3 = S_{i+2}$ Following station $S_0 = S_{i-1}$ $S_4 = S_N = S_{i+3}$ T=3 \mathbf{L}_1 → t2 Line start Previous station Current Station Following station Line end $S_2=S_{i-1}$ $S_{2}=S_{i}$ $S_{3=} S_{i+1}$ Previous station Following station $S_0 = S_{i-2}$ $S_4 = S_N = S_{i+2}$ T=4 MELEN λt_1 Line start Current station Previous station Previous station Line end Previous station $S_{3}=S_{i}$ $S_2 = S_{i-2}$ $S_{2}=S_{i-1}$ Following station $S_0 = S_{i-3}$ $S_4 = S_N = S_{i+1}$

Findings

• Predict arrival delays for multiple downstream stations at arbitrary times.

- Stop station with observed information
- Stop station with arrival time to be predicted
- o Nonstop station

Error adjustment strategies

Stop station with observed information

Stop station with arrival time to be predicted

Nonstop station

Upstream prediction error correction

Findings

• Use observed information, prediction errors at current and previous stations.

Error adjustment strategies

Stop station with observed information

Stop station with arrival time to be predicted

Nonstop station

Upstream prediction error correction

Findings

- Use observed information, prediction errors at current and previous stations.
- Enable the model to constantly adjust itself.

Research question 4

How can train delay prediction models be evaluated?

Precision

Statistical variance or the spread of data

Findings

• Measures dispersion of prediction error and bias tendencies.

Precision

Statistical variance or the spread of data

Findings

- Measures dispersion of prediction error and bias tendencies.
- The narrower ranges mean more reliable predictions.

Precision

Statistical variance or the spread of data

Findings

- Measures dispersion of prediction error and bias tendencies.
- The narrower ranges mean more reliable predictions.
- The interquartile range or boxplot clarify prediction error uncertainty.

(a) Invalid inputs

(a) Invalid inputs

(b) Challenging environmental conditions

Findings

• Use datasets with realistic representative of real-world application scenarios.

(a) Invalid inputs

(b) Challenging environmental conditions

Findings

- Use datasets with realistic representative of real-world application scenarios.
- Prevent purely academic contributions without real-world industrial use.

(a) Invalid inputs

(b) Challenging environmental conditions

(a) Application-oriented

(a) Application-oriented

Findings

• Tolerance for prediction errors varies depending on the model's use case.

(a) Application-oriented

Findings

- Tolerance for prediction errors varies depending on the model's use case.
- Measure using asymmetric prediction error measures

Departures 03:3		03:38:07	
Route	Destination	Stop	Time
1	Blackyard leys	R2	~ 5 Min
4A	Wood farm	R7	~ 20 Min
4	Abingdon	R8	~ 40 min
5	Old woodstock	R5	~ 05:10 Pm
7	Aylesbury	R2	~ 05:45 PM
S1	Thornhill park & ride	R6	~06:00 PM
S3	Seacourt park & ride	R1	~06:20 PM

Findings

- Tolerance for prediction errors varies depending on the model's use case.
- Measure using asymmetric prediction error measures
- Assesses the consistency of the predictions at each prediction interval .

(a) Application-oriented

(b) Stability of predictions

Dimension

Dimension

Findings

• Overall performance evaluation provides overview of the model's quality.

Dimension

Findings

- Overall performance evaluation provides overview of the model's quality.
- Detailed evaluations across dimensions uncover underlying performance patterns.

Conclusion & Future research

Conclusion

- Use recent data improves train delay prediction model.
 Introduced location conditional concepts and error adjustment strategies
 - Generate synthetic train events

Conclusion

- Use recent data improves train delay prediction model.
 Introduced location conditional concepts and error adjustment strategies
 - Generate synthetic train events
- Dynamic multi-output prediction models are crucial for practical applications
 - Introduced line-level multi-output machine learning models
 - Network-level prediction models

Conclusion

- Use recent data improves train delay prediction model.
 Introduced location conditional concepts and error adjustment strategies
 Generate synthetic train events
- Dynamic multi-output prediction models are crucial for practical applications
 - Introduced line-level multi-output machine learning models
 Network-level prediction models
- Evaluate models from various aspects and dimensions
 Established an evaluation framework
 Conduct comprehensive case studies

Thank you!!!

