

How would delays and punctuality be affected by driverless and unattended trains?

Emil Jansson, Ingrid Johansson, Carl - William Palmqvist och Hans Sipilä KAJT Höstseminarium 2024-11-27

Background

- Railways are one of the most energyefficient modes of transportation, however its modals share is decreasing or at best stable
- Some of the reasons the railways are not increasing the modal share:
 - Lack of capacity
 - Not flexible
 - Reliability
 - Shortage of train drivers
 - Cancelled trains
 - Not cost-efficient
- Could automation of the train operation make mainline railways more attractive?
- Urban railway systems have been automated for a long time

Automatic train operation

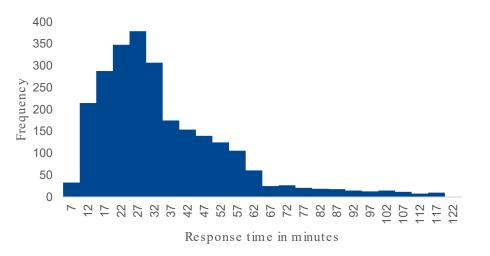
- Automatic train operation (ATO) has different grades of automation (GoA)
 - GoA 1 and 2 have a driver
 - GoA 3 has only train attendant
 - GoA 4 is a full automated system
- With a high grade of automation several potential benefits could be achiveied

Source: Shift2Rail and IEC 62290-1

Research gap and aim

- Many studies have identified the challenges with driverless and unattended train operation but they have not been quantified
- In order to make decisions on future strategies these challenges should be quantified together with the benefits to have a complete business case
- The hypothesis is that some types of delays would be different
 - Driver-related delay causes would no longer be a factor in GoA3 and GoA4
 - With unattended train operation (GoA4) there will no longer be any personnel onboard the trains that could handle unplanned events
- This study is the first step in quantifying the challenges by transforming and simulating new delay distributions for GoA3 and GoA4 trains
- This is a KAJT project (SIMULATO) and also part of Europes Rail Motional WP8/9

Data sources


- Response times for subcontractors in Sweden
 - One year 2019
- Delay causes from Trafikverket (LUPP)
 - One year 2019
- Vehicle failures from Skånetrafiken
 - Jan 2017 Jun 2019

	EA	Electrical installations
	FK	Passability on the tracks due to the weather
	SA	Signalling devices
	ТА	Telecommunications facilities
	ÖA	Other facilities
J		Railway undertakings' reasons
J	AS	Deviating formation
J	DE	Late from depot
J	DM	Traction vehicle/railcar
J	FÖ	Train driver
J	JF	No information from RU
J	OM	Onboard staff
J	PR	Prioritisation
J	ST	Stationary staff
J	TP	Loading/Unloading/Platform services
J	UF	During journey
J	VA	Wagon
C		Accidents and incidents
C	BÖ	Bridge opening
C	DJ	Animals
C	MÄ	Humans

Response times

- The distributions of response times for southern Sweden year 2019
- The time from an event has been reported to a person is at the location, usually contractors
- Upper and lower bound based on the response time for "person hit by train" (should be prioritised)
 - 7 min 118 minutes in southern Sweden
 - 2515 of total 2954 response times (only train disturbances)
 - Median 27 minutes
 - Average 32.7 minutes
 - Standard deviation 20.1 minutes

Response time distribution

Vehicle failure logs

- Vehicle failure logs from the onboard system
- A total of 451 unique failures of which 109 a driver is needed today
- They amount of 6.3% of a total of 668,000 failures during Jan 2017 Jun 2019

Delay causes

- Delay causes are used in other countries such as Germany and Norway, however on a less detailed level than in Sweden
- Each delay that is 3 minutes or longer should be given a cause

2.4 Railway undertakings' reasons (J)

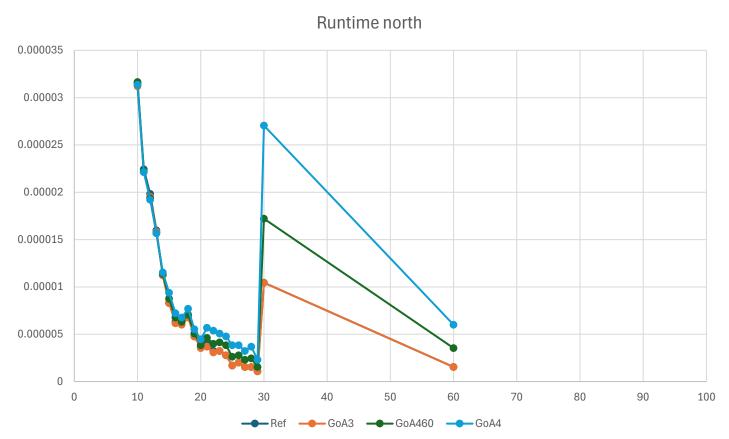
Railway undertakings' reasons					
Code level 1	Code level 2	Code level 3	Description of code level 3		
J	AS		Deviating formation		
J	AS	1	Excess load profile/Exceptional transport		
J	AS	2	Unplanned train length		
J	AS	3	Unplanned train weight		
J	AS	6	Unplanned/deviating HPS		
J	AS	7	Dangerous goods		
J	DM		Traction vehicle/railcar ¹⁾		
J	DM	1	ATC/ETCS error		
J	DM	3	Pantograph		
J	DM	4	Wheel damage alarm		
J	DM	5	Brake error/Brake system/Unintentional brake alarm		
J	DM	6	Rebooting of the system/System recovery		
J	DM	9	Door malfunction		
J	DM	10	Typhoon		

Delay causes

• Together with experts from the industry delay causes that the train drivers could handle have been identified

Code	Level	Description	GoA3	GoA4
FOI 03	3	Turnaround train staff		Removed
JDE 25	3	Late from depot - Driver is late or missing	Removed	Removed
JDM	2	Traction vehicle/railcar		Response time
JFÖ	2	Train driver	Removed	Removed
JOM	2	Onboard staff		Removed
JVA	2	Wagon		Response time
OSY	2	Inspection of track/vehicle		Response time
OTÅ 04	3	Unauthorised stop passage	Removed	Removed

New delay distributions


- The delay distributions was based on a previous study in Skåne (Palmqvist et al., 2023)
- Based on the identified causes and the response times a new delay distributions was introduced
- The delays (n=307) that should be removed (train driver and onboard staff) were removed and replaced with a timestamp of 0-minute value
- The delays (n=599) that would need a physical person in GoA4 were given an additional delay drawn from the response times
 - The original delay was removed and replaced with the original delay + response time
- Due to the uncertainties of new technological developments and new work processes with GoA4 trains a sensitivity analysis is added.
 - 60% of the vehicle failures are supposed be handled without a physical person

Palmqvist, C.W., Johansson, I., Sipilä, H., 2023. A method to separate primary and secondary train delays in past and futuretim etables using macroscopic simulation. Transportation Research Interdisciplinary Perspectives 17, 100747. URL: https://linkinghub.elsevier.com/retrieve/pii/S259019822200207X, doi:10.1016/j.trip.2022.100747.

New delay distributions

 The distributions are very similar even after the transformation, the differences can be seen at higher delay values for the scenarios with GoA4

Preliminary results – Punctuality and delays

- The simulation results show small differences
 between the scenarios
- The differences in average delay time, even though very small, show expected tendencies
 - GoA3 scenario should be better than the reference scenario
 - GoA4 scenario should be worse than the reference scenario

	Commuter trains						
	RT+5	R	T+15		Average (s)	5	Std (s)
Ref		91.9		98.6		109.1	226.2
GoA3		91.9		98.6		108.9	227.1
GoA4		91.8		98.4		112.6	256.9
GoA4 60%)	92.0		98.5		110.6	245.1

	All trains						
	RT+5	R	T+15	Averag	e (s)	5	Std (s)
Ref		90.0	97	.9		77.8	692.5
GoA3		90.1	97	.9		77.0	692.8
GoA4		90.0	97	.8		79.2	699.3
GoA4 60%	, 0	90.1	97	.9		77.3	695.0

Difference in total delay time (over 300 cycles) with reference scenario for commuter trains

Scenario	Difference (h)
GoA3	-10
GoA4	145
GoA4 60%	62

Limitation

- In this study no consideration to other aspects of ATO such as run times and headway
 - This will be covered in the upcoming simulations in Europes Rail during spring 2025
- The simulations are only done with a macroscopic tool, PROTON
 - But the delay distributions could be used in any simulation tool
- Only dwell and run-time delays were transformed
- Trains are not connected at the end stations

Discussion

- A first glimpse of the negative effects of GoA4 trains on a mainline system
 - The results show small negative effects for the GoA4 trains
 - The number of events are small compared to the number of departures of a commuter train system
- Another type of train system with fewer departures could be more affected by GoA4
 - Such as long-distance trains or freight trains
- The delay causes for animal (ODJ) and humans (OMÄ) have been discussed a lot in the project and this will be further discussed in the project

Discussion

- But there also other aspects
- Thanks to an observant driver last year a potential disaster was prevented in northern Sweden
- The preceding driver alerted the traffic control about damage to embankment and eventually the traffic controller reduced the speed from 160 km/h to 40 km/h

Source: Statens Haverikommission, 2024 (SHK 2024:14)

Future work

- In Europe's Rail a simulation with GoA4 will be performed on the Iron Ore Line with a similar setup
- In Europe's Rail simulation of GoA2 will be performed on Citybanan, Citytunneln and Norrköping-Mjölby

Thanks for listening ! Questions or suggestions?

