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Heterogeneity M easures and Secondary Delayson a
Simulated Double-Track

Anders Lindfeldt

Royal Institute of Technology, Division of Traffand Logistics,
100 44 Stockholm, Sweden, e-mail: anders.lindfekl@kth.se

Abstract
The demand for transportation on railways growsefech year and many railway lines are
already used close to maximum capacity. One wayd@ase capacity is to reduce traffic
heterogeneity. Heterogeneity is introduced wheintiservices with different speeds
operate on the same line. There are many defisitadrheterogeneity in literature. Good
measures are important in order to be able to duarapacity lost due to heterogeneity,
and consequently how capacity can be gained bycheglit. This paper analyse some of
the existing measures as well as introduces a mey Mean Pass Coefficient (MPC).
Other measures analysed are: number of speed IéSk)s speed ratio of fastest to
slowest train (SR), mean difference in free runnimge (MDFR) as well as sum of
shortest headway reciprocals (SSHR) and sum ofsieadway reciprocals (SAHR).
Two infrastructure models of double-track lineshwivertaking stations spaced at
different intervals are simulated. A large numbétimetables are created where traffic
density as well as the mix of slower and fasteingas varied. Each timetable is
characterized using the different definitions ofelnegeneity and the results are used in
regression analyses to determine their explanataye with respect to secondary delays
created in the simulations. Results show that MR@opms best closely followed by
MDFR and SR, while SL is worse when it comes tol@rng secondary delays. SSHR
and SAHR also show good performance. The performasfcthe measures increases
when primary delays are high, but is unaffectednbgrstation distance.

Keywords
Railway, delay, heterogeneity, simulation, regr@ssi

1 Introduction

The ever increasing demand for transportation difwags makes it important to
understand how railway operation reacts to incretasgacity utilisation. One factor that
is of great importance when capacity is discussettaiffic heterogeneity. Heterogeneity
can be used to describe two different propertietheftimetable. The first is how evenly
distributed the train movements are over a giveriogeof time and the second is
associated with speed differences between trainketerogeneous timetables, trains use
the infrastructure unevenly over time with greaffedence in average speed. Besides
limiting the number of trains it is possible to eduole, high heterogeneity does also
increases the risk for delay transfer, i.e. secondalays. In the first case, the buffer
times between trains are unnecessary small. Irs¢icend the speed difference implies
that faster trains risk catching up on slower sand that slower trains may be forced to
stand aside for unscheduled overtakes.

When a double-track railway line with heterogeneafic has reached its maximum



capacity, one option is to increase capacity byicad) heterogeneity. One way to this is
to reduce the mean speed of the fastest trainscogase it for the slowest. Other options
are to separate slow and fast trains in time ocespa.g. by letting slow freight trains run

at night and faster passenger trains during theaddyy constructing new tracks. Each
solution costs and it is therefore important taabée to quantify how heterogeneity affects
capacity. This in turn requires that it can be meas in good way. Many definitions of

heterogeneity can be found in literature and thenrabjective of this paper is to analyse
some of these and how well they can be used t@expecondary delays in double-track
operation.

There are several different methods for railway rapen analysis. They involve
simulation, optimisation, queue theory and othalital methods as well as statistical
analysis of empirical data. All methods have ttepiecific strengths and weaknesses and
use models with different levels of detail. In gethe methods based on less detailed
models may be better for drawing general conclissiatnich make them suitable tools for
long term planning. On the other hand, more detaiteodels are required to perform
thorough studies, but they do also require mora datinput and risk generating results
that are only valid for a specific setup.

In this paper micro simulation is used in an extensexperiment where several
parameters are varied. Simulation results are fogegegression analysis to determine the
performance of several heterogeneity measures ulifferent conditions. The following
sections cover related research, description ositin@lation experiment and definition of
heterogeneity measures. In the section coveringdhalts, some illustrative examples
from the simulations are given to increase the tstdading before the results of the
regressions are presented. Finally some generalugions are made.

2 Reated Research

Huisman [5] developed a stochastic model for edtimgahe running time on double track
railway lines with heterogeneous train traffic. Tiedel describes secondary delays due
to faster trains catching up with slower ones. fraa order can be either random, which
is useful for long term planning, or defined byyale timetable. The primary delays used
include both entry delays and running time extemsidduisman demonstrates the model
by applying it on a Dutch railway line to show hofe number of trains, heterogeneity,
primary delay, train order and buffer times inflaerthe delays. However, the model is
limited to analyse delays on line sections whean$ are not allowed to overtake, hence
delays at stations due to overtaking and dispagchations are not included.

Gorman [3] uses real data to do statistical estomatof delays. He predicts total train
running time based on free running time predictord congestion-related factors, such as
meets, passes, overtakes, train spacing varialility departure headway. He concludes
that the factors showing largest effect on congastilelay are meets, passes and
overtakes.

Gibson et al [2] develops a regression model udilgy data from the rail network in
the UK. He uses a method similar to the timetallmmression defined in the UIC 406
leaflet [19] to define capacity utilisation. He t®sa number of functional forms
(exponential, adjusted exponential, power and lneand finds that secondary delays
increase exponentially with capacity consumptioradime section. He also discusses how
the relative speed of a train affects its margawst, congestion cost. Using simulation, he
concludes that adding a train that is 20 % fasten the fastest train in the timetable, have
a congestion cost that is 20 % higher than prediiftea train of average speed. Similarly,



adding a train that is 20 % slower, costs 50 % rtlose the average train.

Vromans [21] defines two measures of heterogeraityuses simulation to show their
correlation to the average delay. The two measaresSSHR (sum of shortest headway
reciprocals) and SAHR (sum of arrival headway nexipls). The first measure looks at
the headway both at the start and at the end olinkesection, and therefore takes into
consideration both the heterogeneity in speedefriins and the spread of the trains over
time. The second measure, SAHR, focus only at &agllvay at the end of the line section
under the assumption that the headway at the emdoig important than at the start.
Several timetables with different heterogeneity areated and simulated using the
simulation tool SIMONE to show that both heteroggnmeasures correlate positively to
the average delay. In the simulation both dwelletimxtensions and running time
extensions are used. Overtakes are also possibl@0l, Vromans further develop the
measures by compensating for the minimal headwatyishtechnically possible between
two trains at the each location, thereby estimathigy headway buffers rather than the
absolute size of the headways. This has an adwaitage mimum technical headway
varies along the line or between different traipety. The SSHR and SAHR are further
developed by Landex [7] into new measures for bggmeity that is independent of
traffic density and number of trains used in thiewation.

Murali et al [13] develops at simulation-based teéghe to generate delays used in
regression models to predict delays in double- sindle-track sub networks. Several
parameters are used to describe the topology ohéteork as well as the operating
conditions when the train of interest enters thbnstwork. They find an exponential
relationship between delay, train mix and paransetiescribing the operating conditions
and network topology.

Lindfeldt [12] uses advanced experimental desigmukation and response surface
metamodelling to analyse how nine different paramsetaffect delay development of
mixed traffic on a double track railway line. Thevéstigated parameters are: distance
between adjacent overtaking stations, train topedpé&ain frequency, entry delays and
running time extensions, for both high-speed sessiand freight services independently.
In order to reduce the number of necessary paraspetiee delays are modelled by
negative exponential distributions. In additionndfeldt points out the difficulty of
defining the timetable by a few independent factdfsanks to the experimental design
using Latin hypercubes, only 66 design points aeded to form the metamodels. The
simulations are performed in the simulation tooll®s using the mean and standard
deviation of the delays as response variables. rEselts show that the speed and
frequency factors as well as the running time esitemhave great impact on delays. The
entry delays and inter-station distance are foorttate less impact.

Sogin et al. [18] analyse the effect of heterogesewmaffic on a single track freight
network. The analysis is performed with a microdation software called Rail Traffic
Controller, RTC, and the measure of performanaelay of the freight trains in min per
100 train miles. The delay includes both times rffegets and passes, i.e. they are not
planned in advance, and are calculated by RTC. figrafensity is varied and
heterogeneity is controlled by systematically agdimssenger trains of different speeds.
For completely homogenous freight traffic, delaye #ound to increase exponentially
with traffic density. A relationship between speadfierence between trains and delays of
the slower trains is proposed. At higher trafficnsiies, the delays of freight trains
increase with speed difference, but with high efmowpeed difference, the effect
diminishes.

Yung-Cheng et al [22] creates parametric modelssiimate capacity of single and



double-track operation. RTC is used to performlafictorial design. Traffic consists of
freight trains that are operated without a timedadohd stochastic entry delays are applied
in the simulations. Output from the simulationjrrdelays, is used to estimate parameters
in both regression models and in a neural netwhlif%)(model. Factors in the model for
single track operation are siding spacing, sigpakg, track speed, volume (trains/day)
and heterogeneity. For double-track, the factoes @ossover spacing, signal spacing
track speed, volume, and heterogeneity. A measfifeeterogeneity is defined that is
applicable if the traffic mix consists of two type$ trains. The conclusion is that the
regression model performs better in estimatinglsitigick operation while NN is better
on double-track operation.

Even if there are many papers including heteroggneithe analysis, there are few
that discuss alternate ways of measuring it. Muotkwas been done to create parametric
models that explain secondary delay, but many eftlare complex with many factors
and the effect of heterogeneity and the performaridbe used measures are not always
easy to isolate. It is common that studies of fitiyain operation do not model the
timetable in such detail as is needed if the reslibuld be applicable to passenger traffic,
where it is important to separate scheduled delem foperational delay and model the
effect of timetable allowance. In this work allitre are operated according to conflict free
timetables, hence the effect of heterogeneity carsdparated into scheduled delay and
operational delay.

3 Methodology

In this work the railway simulation tool RailSys5Jlis used to perform the
simulations. It is a tool for microscopic simulatiand timetable planning and it is shown
in previous work that it is capable of generatiaglistic results when calibrated and used
to simulate real operation [11, 17]. When microscapmulation is used, it is common
that the analysis consists of comparing resultsnfi few simulated scenarios where
properties of the infrastructure, timetable or pdyations are varied. Each scenario
requires a new simulation and it can be very timesaming if the number of scenarios is
too high. If the aim of the analysis is to make eyah conclusions not connected to a
specific timetable, simulating many timetables beipaking the results less timetable
dependent.

To handle experiments with many scenarios, anfaxderis required to handle input
and output from the simulation tool RailSys. A nwathto transfer timetable and
perturbation data into RailSys using xml files &veloped in [9], and is utilised in this
paper to handle the hundreds of scenarios of ttierial experiment. Secondary delays
and used allowance is estimated from actual delapsrated by the simulations.

3.1 Experimental Setup

A factorial experiment is performed with a largemher of timetables, two different

infrastructure variants, and two levels of primatglays, table 1. The infrastructure
models consist of one track operated in one doacthus mimicking the operation of a
double track with assumed independency of trafficdifferent directions. Overtaking

stations are spaced equidistantly. The timetableslafined as cyclic timetables of up to
three trains per cycle using up to three differeain types, high speed, intercity and
freight trains. Taking cyclicity into account, thisakes in total 14 unique combinations,
i.e. types of cyclic timetables with different méxef train types and therefore different
degrees of heterogeneity. In the scheduling algorithe timetables are controlled by the



starting order of the trains and their headwayatdrigin. The perturbations include three
different types of delays, entry delay, runningdiextension and dwell time extension.
All three types are varied coherently for two levahd are based on distributions from a
previous project using empirical data from real raien in Sweden [14]. In the
experiment, explanatory variables are inter-statiistance, heterogeneity, number of
trains per hour and level of primary delays. Demenidvariables are scheduled delay,
secondary delay and used allowance. The schedelag & a property of the timetable
and it is consequently not necessary to perforrmalation to obtain it. The allowance
consists of two parts, running time allowance alhowance at stations where trains are
scheduled to stop. It is especially the allowantcstations that is dependent on traffic
density and heterogeneity of the timetable, dubedrequency of scheduled overtakes.

Table 1: Experimental setup. A full factorial desigith 336 scenarios. The first factor
is the distance between overtaking stations. Thergkis type of timetable, i.e.
which train types are included in the timetable€hegeneity factor). Third
factor is traffic density which is used to vary teays between the trains.
Fourth, the amount of primary delays applied ingimeulation.

Inter-station Train-type Traffic density Perturbation
distance start order level
[km] Timetable 1: high-speed, Headway, % |ofLow, high
number  2:intercity, 3: freight minimum

1 1
2 2 100
3 3

20 4 12 116
5 13 Low
6 23 138
7 112
8 113 171
9 122

40 10 123 223 High
11 132
12 133 322
13 223
14 233

Secondary delays and how allowances in the timetatd used are dependent of the
timetable and applied primary delays. Since themary delays are modelled by a
stochastic process, simulation is needed to obttaém, figure 1. The timetable is
characterised by no. train/h and the different messsfor heterogeneity. The minimum
headway referred to in table 1 is dependent on tfgemetable, i.e. train order, and the
inter-station distance. After the timetable is gabed, the scheduled delay is evaluated.
The available allowance is the sum of running tallewance, allowance at stations and
scheduled delay.

Results from the simulation are obviously depenaentmany parameters. The most
significant may be the scheduling scheme useddatertimetables, dispatching rules in
the simulation model, how primary delays are madkland infrastructure layout. For
example, different schemes when timetables aretettemay distribute allowances and



buffer times differently. Other dispatching prige# in the simulation affect how trains are
operated in the simulation and infrastructure patens such as signal block lengths and
number of tracks at stations affects capacity.thib factors influence secondary delays
and is important to keep in mind when results aedysed.

Sioorith
algorithm

Timetable

Train start order

Timetable evaluation
- Trains/h
- Heterogeneity
- Scheduled delay

Simulation evaluation
Primary delay |—>| Simulation l—, - Secondary delay
- Used allowance

- Delay development

Figure 1: Workflow of the experiment.

Infrastructure M odel

The models are simplified double-track lines witllyoone track since the traffic is only
simulated in one direction. This simplification fational since in Sweden traffic in
different directions is generally independent ofteather. The stations are modelled as
two-track overtaking stations with a track lengtil600 m. The total length of the line is
constant at 200 km, hence does the number of s&atiary between the infrastructure
variants. All tracks are completely horizontal. Tleagths of signal block sections are
1000 m and no overlaps are required for releasaig toutes. The speed is 200 km/h on
the main track and 100 km/h on the sidetrack.

Timetable

As mentioned before, the timetable is made up cdettdifferent types of trains: high-
speed, intercity, and freight trains. Some charasties of the trains are listed in table 2.
The total number of stops is independent of infrecstire variant and all trains stops at the
first and last station. Both when timetables aeatad and in the simulation, faster trains
have higher priority.

Table 2: Train type characteristics.

Train type High-speedntercity Freight
Vehicle X50 X60 RC4, 1000 ton
Top speed [km/h] 200 160 100
Average speed [km/h] 168 125 95
Total running time [min] 72 90 127
Number of stops 4 6 2
Priority (1:high, 3:low) 1 2 3

All scheduled stops are modelled in the same wayallotrain types. The scheduled
dwell time is 120 s and the minimum dwell time i® 8. The difference between
scheduled and minimum dwell time is an allowancedu® compensate for delays. On
line-sections, running time allowance is appliedimreasing the scheduled running time.
A running time allowance of 6% is added to the mimmn technical running time, the
same as used by DB [16]. The trains are allowedstothe entire allowance to catch up
delays. The cyclic timetables consist of 35 cyclelsere the five first and last cycles are
considered to be warm-up and cool-down periodsdiswhrded in the evaluation.



Delay M odelling

The primary delays applied in the simulations argryedelays, running time extensions
and dwell time extensions. Both entry delays amuhing time extensions are modelled by
empirical distributions and dwell time extensionslldw an analytical lognormal
distribution. All distributions is taken from anréar project where empirical data from
the Western Main Line in Sweden (a double trac& from Stockholm to Gothenburg) is
used to for estimations [14]. The distributions é&v some cases been adjusted according
to the new infrastructure they are being applieditosome cases they have also been
altered in order to reduce the number of replicetineeded in the simulation to achieve
stability. The same delay distributions have begpliad to all train types. In simulations
of real train operation, different train types aften allocated to different distributions
due to different behaviour in real life. This ispesially true when comparing freight
trains and passenger trains. In this work howether focus is on how parameters such as
traffic density and heterogeneity affect differappes of trains. Therefore, in order to
keep the results comparable between train typessame primary delays are applied to
all trains. This also applies to how stops are riilede

Table 3: Primary delay distributions used in thaidation.

Perturbation levelLocation Distribution typeMean [s] Std [s] alpha beta

Low Entry Empirical 120 180 - -
Line (20 km) Empirical 5.1 23 - -
Line (40 km) Empirical 10 32 - -
Station Lognormal - - 3.92 0.56

High Entry Empirical 240 390 - -
Line (20 km) Empirical 9 30 - -
Line (40 km) Empirical 18 41 - -
Station Lognormal - - 4.29 0.56

In the simulation model, running time extensiors applied between all stations (line
sections). It is reasonable to assume that the imuagnof the delays is proportionate to
the length of the line sections [4]. The input disitions are based on empirical data from
line sections with an average length of 34 km aadehbeen rescaled to fit the length of
the line sections in the model (20, and 40 km) djysting the probability of receiving a
delay. The scaling is done in such a way that teanmmvalue of the sum of all running
time extensions applied along the whole line is $hene, i.e. the mean of the applied
running time extensions are independent of infuastire variant. The same is not true for
the standard deviation and is an effect of resgative distributions. When a dwell time
extension is applied, the value given by the stetitbigrocess is added to the minimum
dwell time to obtain the minimum time that the trdias to stop. The distributions are
adapted to stops modelled by a minimum dwell tirh8®s and scheduled dwell time of
120 s. In reality however, a minimum dwell time3ff s may be too short for long freight
trains where releasing the breaks after applyingmttfor a complete stop takes a
considerable amount of time. However, as previodi&gussed, this is not considered and
stops are modelled in the same way for all trapesyto simplify the analysis of the
simulation results. Table 3 shows some propertigstiie different distributions. The
simulation is run for 80 replications to achievaisity.



3.2 Heterogeneity Measures

Speed Levels(SL)

As the number of trains with different speeds iasee so does the complexity of the
timetable. A complex timetable is complex to operand demand more complex
dispatching resolutions and might generate morerskary delays. For this reason, the
first heterogeneity measure is number of speeddewesent in the timetable. It does not
consider how much the speeds differ, just the nurabanique speeds. If it is used over a
longer line, average speeds can be used when deitegrthe SL to capture the effect off
different stopping patterns etc. SL is always edoabr larger than 1 (1: homogenous
timetable).

Speed Ratio (SR)

The Speed Ratio (SR) is proposed and used by Kruege parametric model for
estimating delays [6]. It measures heterogeneitgpgaed and is the ratio of fastest to
slowest train speed, eq. below. It is a measure dbas not rely on cyclicity and can
easily be applied to real timetables. A similar mga is proposed in [8] where the speed
ratio is calculated as the 0.95 percentile dividgdhe 0.10 percentile, thus avoiding the
most extreme speeds that may be present in ainealtéble. | this paper timetables
include at most three different train types, hetihege are never more than three different
speed levels and the two measures give the samksres drawback may be that it does
not capture the full variety of the train speedsalhomogenous timetable where all trains
travel at the same speed, SR has a value of 1.

R-= m.aX(Vl Ny M)
min(v,,v,,... v, )

@

M ean Differencein Free Running Time (M DFR)

The Mean Difference in Free Running time (MDFRaimeasure developed in [9] where
it complements traffic density when several différaspects of timetables and delays are
discussed. It utilisefree running times, i.e. running times when trains ao¢ affecting
each other in terms of overtakes. Hence, it dogs aescribe heterogeneity in speed and
is independent of traffic density. MDFR is giventhg eq. below and is calculated as the
mean value of the differences in running times leetwtrains in the cycle. The difference
in running time indicates the consequences of fastes catching up on slower trains on
line sections and the time a low priority train dam expected to wait to be passed by a
faster train. Together with the headway, the déffele in running time does also hint on
the required number of overtakes. The differenceaisulated for all combinations of
trains in the cycle, not only between adjacenngaFor this reason the measure can be
expected to perform best for timetables with stoytles and when trains suffer from
significant delays. When this is the case, it isyable that all trains in the cycle are likely
to affect each other.

-1

n n-1 n
MDFR:[] D > abs(rt, -rt) nx=2

2 i=1 j=i+1 (2)
MDFR=0 n<?2



In the same paper another measure based on thal actieduled running time, i.e.
including overtakes and therefore not independénitadfic density, is presented: Mean
Difference in Scheduled Running time (MDSR). Howetke MDFR was found to have
higher explanatory value due to that it is indemenaf traffic density. In a homogenous
timetable where all trains travel at the same sp&HdFR has a value of 0. It is not
independent of absolute speed or distance.

M ean Pass Coefficient (M PC)

The Mean Pass Coefficient is developed in this papd measures speed heterogeneity.
It is designed to predict the number of overtakesded in a cyclic timetable, with the
assumption that each overtake introduces deperetebeitween trains that might cause
delay transfer. The number of overtakes is achidecdhultiplying MPC by the number
of trains/h supported by the timetable. It is theam value of two figures, pass coefficient
(psc) and passed coefficierpdc), each calculated individually for each train e tcycle,
eg. (3). Thepsc indicates the number of times a train pass otf@ng and thepdc the
number of times it is passed by other trains.

If the coefficients are based on free average spaed running times, they become
independent of traffic density. However, since @aging traffic densities introduces more
overtakes and hence lowers the mean speed of lpvierty trains, the error in the
estimated number of overtakes grows as traffic itleimcreases. If the aim is to estimate
the number of overtakes, the actual running timed mean speeds of the scheduled
timetable should be used instead. Then the measure longer independent of traffic
density. Another assumption that may limit the aacy of the predicted number of
overtakes is that the cycle time of the timetalbleutd be short, compared to the time it
takes the trains to run the whole line. The measumntinuous, while the number of
overtakes scheduled in the timetable is discrelés & not necessarily an disadvantage,
since the number of overtakes actually realisethénoperation may not always be the
same as the scheduled, due to delays and dispgtetinWhen MPC is referred to in this
paper, it is based gpsc andpdc using free running times and speeds. In a homageno
timetable where all trains travel at the same sp®#aC has a value of 0. It is not
independent of absolute speed level or distance.

n v, -V,
psC, :EZmax[ ort, - J)J
v

n j=1 j

pdc = —lzn: min[o,rti G(V'\:iV‘)J 3)

n j=1 i

MPC =52(psc. + pdc)
N4

SSHR & SAHR
Two measures are proposed in [21], sum of shamestiway reciprocals (SSHR) and sum
of arrival headway reciprocals (SAHR). SSHR reaotboth difference in speed between
trains and the spread of the departures/arrivats ¢ivne. The SAHR considers only
headways at arrival under the assumption that hap@ivarrival is more important than at
departure when secondary delays are created.

The measures are calculated for each line sectparately. The reason why the



measure is calculated for each line section seglgrat its headway measuring feature,
which means it can differ from one line sectioratmther. The SSHR is always equal to
or larger than the SAHR. The difference betweenttiee may be large if the timetable

consists of trains with large speed difference$iB % the same as SAHR when all trains
travel at the same speed. As defined here, they@réndependent of traffic density or

number of trains (headways) included in the cattarta In order to avoid the dependency
of the number of trains, always 6 trains are usethis paper in the calculation of the
SAHR and SSHR, no matter if the number of trainseéth cycle is 1, 2 or 3. The

possibility to measure uneven headways can givadumantage compared to the other
measures that does only measure heterogeneitgadsp

SAHR = Z”: 1 e hegdv_vay at arrival between _
= h* trainsi and + 1 on the track sectic
4
SHR = Z”:i - smallest scheduled headway betw
= h trainsi and + 1 on the track secti

4 Simulation Results

Traffic Density

The bar graph below summarizes the results of dniheotimetables consisting of
freight trains, IC trains and high speed traing, ione of the more heterogeneous
timetables. The graph shows clearly how both timetable and the trains in operation are
affected when traffic density is increased. Theifigg are mean values for all train types
combined. The bars showing the available allowanckide scheduled delay, hence the
dramatic increase in available allowance at statemtraffic density grows and overtakes
become more frequent. The secondary delays abmsathcrease somewhat for every
increment in traffic density while the secondarjagte on line sections increase slowly at
first and then more dramatically at the highest texels. Secondary delays at stations are
mainly caused by low priority trains waiting to beertaken by high priority trains, while
on line sections, trains tend to interfere with esthrains more freely, regardless of
priority.

It is also evident in the figure that the allowamtestations that is used to reduce delay
increases with higher traffic densities, while tied running time allowance remains
approximately constant. The main reason for thibésincrease in available allowance at
stations. For the first four timetables, the insman used allowance manages to
compensate for the increase in secondary delayit amdot until the final two timetables
that the exit delay starts to increase. All in &l graph shows how allowance and delays
interact and the result thereof, i.e. exit delay.

One methodological aspect apparent from figure thas all types of primary delays
are as good as constant for all simulations. Thisniended and shows that enough
replications have been simulated to achieve staiglen values. Another is that the bars
showing the delays and used allowance sums upetséaime value, which shows that the
definitions of secondary delays are consistent thiéhdefinitions of used allowance.
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Figure 2: Left, total allowance for all timetabiges as function of traffic density.
Right, simulation results for timetable type 10gfitspeed, intercity,
freight trains), mean values for all train types.

Secondary delays and heterogeneity is the focubisfpaper. Figure 3 below shows
secondary delays as function of traffic density dirl4 types of timetables. Left figure
shows delays on line sections and the right atiostat Several things are worth
commenting on:

Secondary delays on line sections seem to incregsenentially with traffic density,
while at stations the increase shows a more libehaviour. The probable explanation is
that the increase in allowance at stations prevamtapid growth of secondary delays,
while on line sections no such extra allowancetexiSecondary delays at stations are
closely correlated to the scheduled delay, figurd@re scheduled delay is in this case
the same as more allowance at stations, which tieveain effect of reducing secondary
delays at stations. This is the explanation whysime cases, secondary delays can
decrease locally as traffic density increases. Hewean some extreme cases there is also
a negative effect of slower trains being schedutedsait for long times, can be seen as
large line delays of timetable 6. The reason is$ sidetracks will be occupied for a large
percentage of the time and thus unavailable forlammed overtakes. This is further
discussed in [10].
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Figure 3: Secondary delays on line sections (&ft) at stations (right).
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It is possible to distinguish three separate groupthe figures. The first with the
lowest delays are the completely homogenous tinestai-3). The second group consists
of timetable (4, 7, 9) and corresponds to timetahligh only passenger trains. In the final
group, all timetables that are a mix of freightriaand passenger trains (5, 6, 8, 10-14).

Of the completely homogenous timetables, freigaing seem to suffer from more
delays than the passenger trains. At stationsctnisbe explained by that the passenger
trains have more scheduled stops and that the slenestarts to schedule trains on both
tracks alternately, this can be seen as a sligttedse between 11 and 13 trains/h for
timetable 1 and 2. On line sections the differeiscmore significant and is probably due
to a combination of smaller possibilities to recofrem delays at stops, poor acceleration
performance and longer time to clear the signalbilugk sections due to lower top speed
and longer trains. This behaviour is an example reshéromans [20] measure for
headway buffers can be used to add valuable infiiomgo the analysis.

Train Types

Several aspects have to be considered when cap@diéfined and conditions have to
be applied to both the timetable and to the trai@ration. For timetables, these conditions
are derived from demand and may for example inclaltek-face timetables, and
scheduled delay. Level of acceptance of operatidaklys might be the most important
condition on the train operation. Both the sched@ad operational delay goes up when
traffic density is increased. In this case the slotwain types have lower priority both in
the scheduling procedure and in the simulation. ttlesequence is that slower trains
receive both scheduled delay and operational delhjle faster trains suffer only from
operational delay. This indicates that the reshittée to be separated according to train
type in the analysis.

Freight trains, running time: 127 [min] High-speed trains, running time: 72 [min]
40 40
I Exit delay
35 o] [ Used running time allowance | 35
[ JUsed allowance at stations
G BOf e e ] CJEntry delay I EIRETITIEITRY 308
c [__JRunning time extension c
g 25k ] [ Dpwell time extension | o425 g
2 I secondary delay on line sections 2
NS I Secondary delay at stations L=
20 e : Ty delay N 120
% E I Available allowance on line sections| g E
> 15k [ Available allowance at stations I . 415 z
© ©
[a] [a]

2.7 3.8 5 6.2 7.4 8.5 . X 5 6.2 7.4 85
[trains/h] [trains/h]

Figure 4: Results separated for individual traipety in timetable type 5. Values for the
bars ending outside the left figure are (left ght) 75, 82 and 62 minutes.

Figure 4 shows results from timetable type 5, sapdrfor each train type. It consists
of freight trains and high-speed trains and is ohéhe most heterogeneous timetables.
The left diagram shows results for freight trainsd ahe right for high speed trains.
Several interesting observations are worth commgnti

As mentioned before, it is only the freight trathat receive scheduled delay due to
more frequent overtakes at higher traffic densifigee scheduled delay is substantial and
becomes as much as 82 min, outside the figure, hvbarresponds to an increase in
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scheduled running time of 65%. The scheduled defaylosely connected to the
scheduling scheme. It is possible that if smallesicied delays are accepted also for high
priority trains, scheduled delay for low priorityains would decrease significantly.

Worth commenting is also the fact that the schetidiglay for freight trains decrease
when traffic density increase from 7.4 to 8.8 ts#in This is an effect of using cyclic
timetables and an infrastructure with the ovartgkirstations spaced equidistantly. A
shorter headway may cause a better timing at deesta.e. the freight trains have to wait
for a shorter time before the high-speed trainsv@rrwhile the number of overtakes
required remains the same.

The large difference in used allowance betweentithia types is explained by the
difference in available allowance. For freight miithe increase in used allowance at
stations is more than 11 minutes, which more thatl wovers for the increase in
secondary delays. For high speed trains therenissilno increase in used allowance at
stations, and a very small increase of used runtiing allowance. The limited increase is
explained by that most of the allowance is alreiaslyd, even at low traffic densities.

Freight trains receive most of their secondary ylelt stations, but some on line
sections as well. High-speed trains get it onlylina sections. The reason for this is that
lower priority trains have to wait at stations t® dvertaken by faster high priority trains.
The efficient dispatching and the fact that dwete extensions rather than departure
delays have been used in the simulation, has feetehat the high priority trains get next
to no secondary delays at stations. Looking ast#wndary delays in total, freight trains
get some delays even at low traffic densitiesadteases with traffic density, but seems to
level out somewhat. For high speed trains, thersday delays are at first almost non-
existent, but at around 5 trains/h the secondagydielays start to increase quite fast. The
rapid increase is probably explained by the limitegacity of the two track stations that
only allow one train to be overtaking at a time. A4 and 8.5 trains/h, overtakes are
scheduled at every station.

The exit delay does also differ between the twinttgpes and is explained by the
difference in used allowance. The development efekit delay of the high-speed trains
follow quite well that of the secondary delays, @bhis natural since nothing else changes
much. The freight trains however, manage to keepettit delay constant, or even reduce
it slightly, as the traffic density increases. Exbough figure 4 does not show the same
timetable as figure 2, the behaviour of the invdlw&ain types are the same. In figure 2,
the exit delays remain stable at first, and thart $b increase in union with the secondary
delay on line sections. Looking at figure 4, thehlviour can now be explained by that it
is the secondary line delays of the high priongirts that starts to go up, and since they
cannot use any allowance for recovery, so doesxhelelay.

5 Regression Analysisof Heter ogeneity M easures

Stepwise multilinear regression is used to findlmw the calculated parameters correlate
to secondary delays. The algorithm uses p-valuesttfe F-statistic to decide which
parameters to include in the model [1]. The defaettings are used, i.e. an initial model
with no terms, an entrance tolerance for the pe/alu0.05 and an exit tolerance of 0.10.
For the exponential models, the natural logarittemapplied to the delays before the
regression. Note that the Root Mean Square ErrddSR) values presented for the
exponential models are affected accordingly. To eriakerpretation of the results easier,
the regression equation is kept simple and is dichtb include first order terms and their
interaction effect. Even if including higher orderms probably would give a better fit,
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the aim is not to create a model explaining deldyg, rather analyse the explanatory
power of the different heterogeneity measures.

M easur es | ndependent of Traffic Density (SL, SR, MDFR, MPC)

Of the five measures previously discussed, fourimdependent of traffic density. It is
therefore possible to compare their values forlthelifferent types of timetables. Figure 5
below shows calculated heterogeneity for SL, SR,ARCand MPC, normalised to range
fromOto 1.

All measures assign lowest value to the same tinletaall timetables consisting of
only one train type (1-3). SL differs from the atheeasures by not explicitly using the
speeds in the calculation. It assigns the highaktes to timetable 10 and 11, the only
ones containing three train types. All other tinbéga except the completely homogenous
have two train types and are considered equal byT8is makes it that all 14 timetables
are represented by just three unique values.

For the other measures, timetable type 5 with asyniigh-speed trains as freight
trains, has highest heterogeneity. SR also as#ignkighest value to timetable 8 and 10-
12, which all contain high-speed trains and freigghtns. SR has four different levels,
corresponding to the three combinations of theetldiéferent train types and the case with
only one train type (ratio: 1). MDFR has six levedlad MPC seven. Ranking the
timetables using the different measures gives thmétable 4, 5 and 6 are valued
differently. Timetable 4 is considered by SR to dndlve same heterogeneity as 7 and 9,
while both MDFR and MPC considers timetable 4 tovimre heterogeneous than 7 and 9.
The same is true for timetable 6 compared to 131ahdMDFR puts the same value on
timetable 6, 8 and 10-12 while MPC considers 6 esanore homogenous than the others.
Finally, timetable 5 is the single most heterogersettimetable according to MDFR and
MPC, while SR vyields the same value for 5 as fan8 10-12. Despite this, it is possible
to rank the timetables from homogenous to hetereges and preserve the individual
ranking of all measures (not including SL).

Heterogeneity [normalised 0-1]

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Timetable type [-]

Figure 5: Normalised heterogeneity values for défe: timetable types. True range is:
SL: 1-3 [], SR: 1-1.77 [-], MDFR: 0-55 [min], MP®-0.46 [h].

An interesting comparison can be made between 3.ar{dr 11). Timetable 5 consists
of high-speed and freight trains and 10 of highesheéntercity and freight trains. When
intercity trains are added (lower speed than hjgged and higher than freight trains),
heterogeneity decreases according to MDFR and MdBthot for SR. The same is true if
the added train is of a train type that does alreadst in the timetable, e.g. timetable 4
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and 7 and 8. Another observation is that none ef ieasures distinguish between
timetables 7 and 9, 8 and 12 or 13 and 14 resmdgtive. it does not matter if it has two
trains of one type and one of another, or the otlararound.

In general, the SR, MDFR and MPC have similar behav Having more levels
might suggest a higher resolution and a betteityald capture relevant information. SR
only looks at two trains while the other measued®tall trains into consideration. MDFR
and MPC always give the same result for timetahligs two train types or less, where
the only difference is a factor of 120 (2 hours).

Table 4: Regression results for SL, SR, MDFR andCMP. secondary delay,
X : traffic densityy : heterogeneity.

20 km z = a+bx+cy+dxy

Location Model Primary delayMeasurd a b c d| M2 rmse

Line Linear Low SL -0,520,17 - - 10,43 0,76

SR -1,34 0,22 0,82 - |0,49 0,72

MDFR |-1,55 0,23 1,32 - |0,53 0,69

MPC -1,65 0,23 1,07 - |0,52 0,70

High SL -1,81 0,38 - 0,45/0,37 2,12

SR -2,930,44 - 0,62/0,55 1,79

MDFR |-3,12 0,44 - 0,85/0,62 1,63

MPC -3,21044 - 0,71]0,60 1,68

Exponential Low SL -2,91 0,23 - 0,13/0,63 0,67

SR -3,36 0,25 - 0,20/0,77 0,53

MDFR |-3,40 0,25 - 0,27/0,81 0,49

MPC -3,450,25 - 0,23/0,80 0,49

High SL -1,97 0,20 - 0,24/0,63 0,68

SR -2,45 0,23 - 0,30/0,85 0,43

MDFR |-2,46 0,23 - 0,39/0,89 0,38

MPC -2,550,24 - 0,34/0,90 0,36

Station  Linear Low SL 0,21 - - 0,1p,36 0,46

SR -0,20 0,03 - 0,22/0,80 0,26

MDFR |-0,15 0,02 - 0,27/0,77 0,28

MPC -0,23 0,03 - 0,24/0,83 0,24

High SL 0,47 - - 0,450,41 1,09

SR -0,29 0,04 - 0,55/0,84 0,56

MDFR | 0,06 - - 0,660,833 0,58

MPC -0,400,04 - 0,60/0,88 0,49

Exponential Low SL -1,87 - - 0,38/0,48 0,79

SR -3,18 0,12 1,26 0,26|0,77 0,53

MDFR |-3,24 0,12 1,95 0,27|0,77 0,54

MPC -3,567 0,14 1,86 0,24|0,83 0,46

High SL -0,98 - - 0,39/0,56 0,70

SR -1,12 - - 0,39/0,80 0,47

MDFR |-1,09 - - 0,48/0,79 0,48

MPC -1,19 - - 0,43/0,84 0,42

Table 4 summarizes the results from the regreséiwnthe four heterogeneity
measures. It is based on all simulations of theagtfucture variant with 20 km inter-
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station distance. Output from the simulation isasafed into secondary delays on line
sections and at stations. The delays are meansvané at this stage delays are not
separated according to train type. Results for4@ekm infra is not showed, but are
similar with respect to R*2 values.

Looking at the R"2 values, the exponential modetnsto be more appropriate than
the linear for secondary delays on line sectiorisstations, the difference is not as large,
but the linear models perform slightly better. Hagne is observed in all other regressions
performed in this paper. Hence from now on onlyaential models for line delays and
linear models for delays at stations will be disads

The fit of the models are in general better whaghér primary delays are applied. A
possible explanation is that when delays are hjgihertimetable has less impact on the
behaviour of the trains when they are so latetti@yt are not close to their scheduled train
slot. The effect of different train speeds howei®still present.

In many models coefficient is not significant. Coefficient corresponds to the pure
effect of the heterogeneity measure. Heterogerigittill present in the model via the
interaction term, coefficierd.

MDFR and MPC: the interaction terchgrows with higher primary delays, both on
line sections and at stations. At the same timm tertraffic density, remains constant or
even decrease somewhat. The combination of trafficsity and heterogeneity seems
more important than traffic density alone when @riyndelays are high.

MDFR and MPC: coefficienb is larger relative tal on line sections than at stations.
Apparently, secondary delays on line sections ao¢ &s closely dependent on
heterogeneity as secondary delays at stations.

On line sections, MDFR and MPC perform equally wefid better than SR. At
stations, MPC is the best, followed by SR as sedwgst and MDFR as the third best
measure. SL, the number of speed levels, has thet werformance in all cases. A
residual analysis shows how the models using SRMIDER fit the different timetable
types at different traffic densities, figure 6.

Secondary delays on line sections: Both models nestienates delays in timetable 3,
consisting of only freight trains. It is naturaline none of the parameters in the
regression, traffic density and heterogeneity, cowdfects on delays due to train type
characteristics, as previously discussed. Both tesoaleerestimate delays in timetable 4,
MDFR performs slightly worse. MDFR has a lower mealtue of all timetables than SR,
which explains why MDFR overestimates more that &gpite both measures giving the
same score to timetable 4. The same principle @gthe difference in timetable 5.

Timetable 6 is the first where the two measures giifferent scores. The lower score
given by SR makes it underestimate the delays,eMdiDFR has a higher score and
smaller residuals. The delays at the highest traféinsity are considered to be an outlier
(red) by SR and closely so by MDFR. Looking at feg, the last increase in traffic
density leads to a very dramatic increase in lieéays, hence the outlier. The same
behaviour is seen in timetable 10 and 11. Many tairles are extreme at the highest
traffic density, in the sense that overtakes, sonest double overtakes, are scheduled at
almost every station. This leads to that capaditgtaions becomes a problem and that
faster trains get trapped behind slower trainséseral line sections before being allowed
to pass.

SR overestimates delays in timetable 10 and 11tithetables containing all three
train types. It is interesting to see that MDFRfpens better due to that it assigns a lower
heterogeneity to timetable 10 and 11 than to tibiet&.
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Figure 6: Residuals [min] for models using SR aridMR. Line sections (top) and
stations (bottom). High primary delay level. Negatresiduals indicates that
the model overstimates delays. Outliers are inditat red color (95%). For
each timtable type, traffic density increase inrigatward direction.

Looking at the residuals at stations, the main keen is that variation in available
allowance, i.e. the number of scheduled overtakeshow long trains are scheduled to
wait at stations, have a large impact on secondiigys. Most of the outliers are
connected to extreme increase, or sometimes degrieaallowance when traffic density
increase. In general, if traffic density is incredisvithout a corresponding increase in
allowance at stations, more secondary delays witun The opposite happens if
allowance increase dramatically from one step aiffitr density to the next. To make
things more complicated, it is also of relevancéhd allowance is due to a few badly
timed overtakes or many with better timing. Thisyntee one of the reasons why using
free running times and speeds, rather than schiduleen the heterogeneity measures are
calculated produce better results.

SSHR and SAHR

An advantage of SSHR and SAHR is that they alscsoreaheterogeneity in headway. To
the other measures that only look at speed diftergnall line sections look the same. But
as headways may differ from line section to linetise, SSHR and SAHR can be used to
predict how much delays will occur on each indiatline section separately. For this
reason, SSHR, SAHR and secondary delays for enetséction and station is used in a
first regression analysis. The fit turned out to duéte poor, around 0.6 R"2 or less.
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However, the main reason is that delays are nathasiically stable on the level of

individual line-sections. The experiment was desiyio give stable results taking the
total delay of all line sections or stations. Tléuon is to make more replications, but
this was not done in this paper. Instead, the sdmbeey inputs as in the other regression
models are used, i.e. the total secondary delalldime sections and stations. The SSHR
and SAHR are calculated as the mean of all lindares Unfortunately, this reduces the

variance of the measures and the possibility terd@he their true power.

Table 5: Regression results for SAHR, SSHRsecondary delay : SAHR,y : SSHR.
z=a+bx+cy

Location Model Primary delayInfra a b c| 2 rmse
Line Exponential Low 20km|-3,31 - 0,99/0,82 0,46
40 km|-4,03 - 1,17|0,81 0,58
High 20 km|-2,22 -0,34 1,31/0,90 0,36
40km-2,66 - 1,08/0,88 0,40
Station  Linear Low 20 kmo0,17 -0,740,90/0,68 0,33
40 km|-0,02 -0,46 0,59|0,79 0,19
High 20 km| 0,62 -2,04 2,34/0,77 0,68
40 km 0,20 -1,191,39|/0,86 0,35

The results show a pretty good fit in most casesndy be a bit surprising that it
correlates well with delays at stations, but unelweadways may also increase the risk for
overtakes, hence delays at stations. On line setiS8SHR dominates and SAHR and
SSHR are both present at stations. The negativiiaiert of the SAHR is due to that it
correlates to SSHR. Highest delays are achievedhV@#&HR is small and SSHR large,
which is the case when large speed differenceprasent, compare with the measure for
homogeneity proposed by Landex [7]; the quotierBAHR and SSHR.

Inter-Station Distance and Number of Overtakes

To establish the effect of increasing inter-statilistances, it is necessary to separate the
analysis with respect to train types, or rather flaster and slower trains. Figure 7
illustrates an example of results for one timetabpee. It shows that faster high priority
trains suffer from increased delay on line sectiomile slower low priority trains in
some cases benefits some, both on line sectionatastdtions.
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Figure 7: Results for timetable type 10, separaiii respect to train type and
infrastructure variant (20 km: solid / 40 km: daghé.ow primary delays.
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A regression analysis is performed in the same agalyefore, but delays are calculated
for each train type separately. Beside mean detaggqsc andpdc for each train type is
used, rather than MPC that is the mean of all ttgies. This way the same regression
model can be used to explain the behaviour of tfierdnt train types. For example, IC
trains may act as the faster train in a timetahith W and freight trains, but as the slower
in one where high-speed trains are present. Thigeis represented by different values of
the psc andpdc.

The regression model consists of three factoréfidrdensity, number of times the
train type is passed by other trains as well amtimaber of times it is scheduled to pass
other trains. As before, an exponential model ist fer line sections and a linear for
stations. The model for the line has worse fit titfae one for the station, table 6. Two
possible reasons for this is that all train typeffess from line delays, while it is almost
only the low priority train types that suffers frathelays at stations. The other is that the
line delays have different shapes depending on tggie. It is rather exponential for the
faster high priority trains, while it is more limefor the slower. The reason is probably
that the delays have different sources. For traiitls higher speed, the line delay comes
from other trains of the same speed and being stedknd slower trains, while the
primary source for slower trains are other slownsainterfering and being forced to
decelerate and accelerate due to unplanned overtakes delays for slower trains will
also occur at extreme traffic densities when thayetimes have to wait for a side-track
to clear in order to be overtaken.

Table 6: Regression results when train types aaeackerised by the number of times they
pass, and are passed by other transecondary delay : traffic density,
xyl : number of times passing other traing : number of times passed by other

trains.
z = at+bx+cxyl+dxy2
Location Model Primary delayInfra a b C d| M2 rmse
Line Exponential Low 20 km|-3,72 0,27 0,42 0,52/0,69 0,70
40 km|-4,31 0,30 1,02 0,46/0,62 0,91
High 20 km|-2,61 0,25 0,61 0,64|0,75 0,62
40 km -2,73 0,24 1,03 0,51|0,75 0,59
Station  Linear Low 20 km-0,14 0,02 - 0,94/0,87 0,42
40 km|-0,34 0,03 0,11 1,02|0,90 0,30
High 20 km| 0,00 - - 2,370,91 0,85
40 km -0,50 0,04 0,17 2,40/0,94 0,51

Looking at the coefficients in the regression meddl can be hypothesized that
coefficient b correlates to the interaction with other trainstb& same speed (in a
homogenous timetablg andy2 are zero). Coefficient, faster trains being obstructed by
slower trains. Coefficierd, slower trains being forced to decelerate andlacate due to
unscheduled overtakes. However, since the modelsotidit data very well, 0.62-0.75
R”2, correct interpretations may be hard. At stetjothe model is dominated by
coefficientd, i.e. the number of times you are expected todssgd by faster trains.

The effect of primary delays is on line sectionsintyaseen as an increase in the
intercept,a, but also possibly it andd. In this case it is a limitation that the types of
primary delays are not varied individually. At gvas however, increased primary delay
makesd grow, which is not surprising since it is still sity slow low priority trains that
gets delayed at stations, regardless of the |évbleoprimary delay.
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Inters-station distance does not affect delays tatiogs much. On line-sections
however, the major difference is that coefficienincrease when inter-station distance
increase, which seem natural if it represents fastns being delayed by slower.
Coefficientd decrease slightly, and together with a lower o#pt, line delays seem to
drop some for low speed trains at the 40-km infeecstire, which can also be seen in
figure 7. Coefficienb, interaction between trains with the same spesdains constant.

6 Conclusions

The five measures of heterogeneity analysed inpiaier are all able to explain secondary
delays from the simulation to varying degrees. Foftirthe measures only look at
differences in speed: number of speed levels (8i8,speed ratio of fastest to slowest
train (SR), mean difference in free running timeDMR) and mean pass coefficient
(MPC) that correlates to the number of overtakdsth®se four, SL shows significantly
lower ability to explain secondary delays thanrbgt. This is probably explained by the
fact that it is the only measure that does not tdiee actual speeds of the trains into
account, just the number of different speed lev@fsthe other measures, MPC performs
best, closely followed by MDFR and SR.

Sum of shortest headway reciprocals (SSHR) and afuanrival headway reciprocals
(SAHR) also show good performance. However, duéndations in the experimental
setup, further analysis is required to determimepbtential of their capability to measure
heterogeneity in terms of unevenly distributed hemg.

MPC is a heterogeneity measure developed in thiemthat is designed to correlate to
the number of overtakes that is required in a cyiithetable. It is efficient in explaining
the total amount of secondary delays on line sestiand at stations, figure 8. An
advantage is that it can be calculated for alhttgpes in the timetable individually, which
is valuable since delays affect slower and fasifferdntly. This is exploited in an
analysis where delays are separated for differesin ttypes and their train slots
characterised by the number of times they are é&gegass other trains as well as the
number of times they are expected to be passedh®y trains. Both faster and slower
trains suffer from delays on line sections, altHoutglays are in general higher for the
faster trains. At stations however, almost onlyv&ptrains suffer from secondary delays.

Secondary delay on line sections [min] Secondary delay at stations [min]

Heterogeneity MPC [h]

0 5 10 15 20 0 5 10 15 20
[trains/h] [trains/h]

Figure 8: Contours of delay models using MPC aserbgeneity measure (black lines).

Simulated values (red dots). Grey contours inditaed5% prediction
intervals.
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Inter—station distance does not have any signifiedfiect on the performance of the
heterogeneity measurers. When train types are agglarn the analysis, the most
significant effect of increasing the inter-statidistance is that faster trains suffer from
more delays on line sections while the effect awsk trains are not as clear, if possible
they even seem to benefit some.

Other conclusions are that all measures perfortebehen higher primary delays are
applied in the simulation model, which is probablye to that the scheduled timetable
affects secondary delays less when more trainkgreOn line sections secondary delays
show an exponential growth; this is in line witleyious research. At stations however, a
linear model seems more adequate. The differendleatsincreasing scheduled delay at
stations acts as allowance and helps to reducendappdelays at stations when traffic
density grows.
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